Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Más filtros










Intervalo de año de publicación
1.
Nature ; 628(8009): 811-817, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38632397

RESUMEN

Hybridization allows adaptations to be shared among lineages and may trigger the evolution of new species1,2. However, convincing examples of homoploid hybrid speciation remain rare because it is challenging to demonstrate that hybridization was crucial in generating reproductive isolation3. Here we combine population genomic analysis with quantitative trait locus mapping of species-specific traits to examine a case of hybrid speciation in Heliconius butterflies. We show that Heliconius elevatus is a hybrid species that is sympatric with both parents and has persisted as an independently evolving lineage for at least 180,000 years. This is despite pervasive and ongoing gene flow with one parent, Heliconius pardalinus, which homogenizes 99% of their genomes. The remaining 1% introgressed from the other parent, Heliconius melpomene, and is scattered widely across the H. elevatus genome in islands of divergence from H. pardalinus. These islands contain multiple traits that are under disruptive selection, including colour pattern, wing shape, host plant preference, sex pheromones and mate choice. Collectively, these traits place H. elevatus on its own adaptive peak and permit coexistence with both parents. Our results show that speciation was driven by introgression of ecological traits, and that speciation with gene flow is possible with a multilocus genetic architecture.


Asunto(s)
Mariposas Diurnas , Flujo Génico , Introgresión Genética , Especiación Genética , Hibridación Genética , Sitios de Carácter Cuantitativo , Simpatría , Animales , Mariposas Diurnas/genética , Mariposas Diurnas/clasificación , Sitios de Carácter Cuantitativo/genética , Masculino , Femenino , Simpatría/genética , Aislamiento Reproductivo , Preferencia en el Apareamiento Animal , Especificidad de la Especie , Alas de Animales/anatomía & histología , Selección Genética , Fenotipo , Genoma de los Insectos/genética , Pigmentación/genética
2.
NPJ Syst Biol Appl ; 10(1): 6, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38225420

RESUMEN

The process of speciation generates biodiversity. According to the null model of speciation, barriers between populations arise in allopatry, where, prior to biology, geography imposes barriers to gene flow. On the other hand, sympatric speciation requires that the process of speciation happen in the absence of a geographical barrier, where the members of the population have no spatial, temporal barriers. Several attempts have been made to theoretically identify the conditions in which speciation can occur in sympatry. However, these efforts suffer from several limitations. We propose a model for sympatric speciation based on adaptation for resource utilization. We use a genetics-based model to investigate the relative roles of prezygotic and postzygotic barriers, from the context of ecological disruptive selection, sexual selection, and genetic architecture, in causing and maintaining sympatric speciation. Our results show that sexual selection that acts on secondary sexual traits does not play any role in the process of speciation in sympatry and that assortative mating based on an ecologically relevant trait forces the population to show an adaptive response. We also demonstrate that understanding the genetic architecture of the trait under ecological selection is very important and that it is not required for the strength of ecological disruptive selection to be very high in order for speciation to occur in sympatry. Our results provide an insight into the kind of scenarios in which sympatric speciation can be demonstrated in the lab.


Asunto(s)
Especiación Genética , Simpatría , Simpatría/genética , Fenotipo
3.
Nat Commun ; 13(1): 5893, 2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-36202802

RESUMEN

Homoploid hybrid speciation (i.e., hybrid speciation without a change in ploidy) has traditionally been considered to be rare in animals. Only few accepted empirical examples of homoploid hybrid speciation in nature exist, and in only one previous case (insects) was it convincingly shown that this process occurred in complete sympatry. Here, we report an instance of sympatric homoploid hybrid speciation in Midas cichlid fishes in Crater Lake Xiloá, Nicaragua. The hybrid lineage, albeit at an early stage of speciation, has genomically and phenotypically diverged from both of its two parental species. Together with a distinct stable isotope signature this suggests that this hybrid lineages occupies a different trophic niche compared to the other sympatric Midas cichlid species in Crater Lake Xiloá.


Asunto(s)
Cíclidos , Simpatría , Animales , Cíclidos/genética , ADN Mitocondrial , Especiación Genética , Lagos , Simpatría/genética
4.
Proc Natl Acad Sci U S A ; 119(13): e2121822119, 2022 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-35320043

RESUMEN

SignificanceWhether sympatric speciation (SS) is rare or common is still debated. Two populations of the spiny mouse, Acomys cahirinus, from Evolution Canyon I (EC I) in Israel have been depicted earlier as speciating sympatrically by molecular markers and transcriptome. Here, we investigated SS both genomically and methylomically, demonstrating that the opposite populations of spiny mice are sister taxa and split from the common ancestor around 20,000 years ago without an allopatric history. Mate choice, olfactory receptors, and speciation genes contributed to prezygotic/postzygotic reproductive isolation. The two populations showed different methylation patterns, facilitating adaptation to their local environment. They cope with abiotic and biotic stresses, due to high solar interslope radiation differences. We conclude that our new genomic and methylomic data substantiated SS.


Asunto(s)
Aislamiento Reproductivo , Simpatría , Animales , Especiación Genética , Genoma , Israel , Murinae/genética , Simpatría/genética
5.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-35012980

RESUMEN

Mating cues evolve rapidly and can contribute to species formation and maintenance. However, little is known about how sexual signals diverge and how this variation integrates with other barrier loci to shape the genomic landscape of reproductive isolation. Here, we elucidate the genetic basis of ultraviolet (UV) iridescence, a courtship signal that differentiates the males of Colias eurytheme butterflies from a sister species, allowing females to avoid costly heterospecific matings. Anthropogenic range expansion of the two incipient species established a large zone of secondary contact across the eastern United States with strong signatures of genomic admixtures spanning all autosomes. In contrast, Z chromosomes are highly differentiated between the two species, supporting a disproportionate role of sex chromosomes in speciation known as the large-X (or large-Z) effect. Within this chromosome-wide reproductive barrier, linkage mapping indicates that cis-regulatory variation of bric a brac (bab) underlies the male UV-iridescence polymorphism between the two species. Bab is expressed in all non-UV scales, and butterflies of either species or sex acquire widespread ectopic iridescence following its CRISPR knockout, demonstrating that Bab functions as a suppressor of UV-scale differentiation that potentiates mating cue divergence. These results highlight how a genetic switch can regulate a premating signal and integrate with other reproductive barriers during intermediate phases of speciation.


Asunto(s)
Mariposas Diurnas/genética , Mariposas Diurnas/efectos de la radiación , Genes de Cambio , Iridiscencia/genética , Azufre/química , Rayos Ultravioleta , Animales , Sistemas CRISPR-Cas/genética , Cromosomas/genética , Genes de Insecto , Sitios Genéticos , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Iridiscencia/efectos de la radiación , Masculino , Conducta Sexual Animal/fisiología , Especificidad de la Especie , Simpatría/genética , Alas de Animales/metabolismo
6.
Genes (Basel) ; 12(10)2021 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-34680881

RESUMEN

Different mating systems are expected to affect the extent and direction of hybridization. Due to the different levels of sexual conflict, the weak inbreeder/strong outbreeder (WISO) hypothesis predicts that gametes from self-incompatible (SI) species should outcompete gametes from self-compatible (SC) ones. However, other factors such as timing of selfing and unilateral incompatibilities may also play a role on the direction of hybridization. In addition, differential mating opportunities provided by different mating systems are also expected to affect the direction of introgression in hybrid zones involving outcrossers and selfers. Here, we explored these hypotheses with a unique case of recent hybridization between two mangrove killifish species with different mating systems, Kryptolebias ocellatus (obligately outcrossing) and K. hermaphroditus (predominantly self-fertilizing) in two hybrid zones in southeast Brazil. Hybridization rates were relatively high (~20%), representing the first example of natural hybridization between species with different mating systems in vertebrates. All F1 individuals were sired by the selfing species. Backcrossing was small, but mostly asymmetrical with the SI parental species, suggesting pattern commonly observed in plant hybrid zones with different mating systems. Our findings shed light on how contrasting mating systems may affect the direction and extent of gene flow between sympatric species, ultimately affecting the evolution and maintenance of hybrid zones.


Asunto(s)
Fundulidae/genética , Hibridación Genética/genética , Reproducción/genética , Simpatría/genética , Animales , Brasil , Flujo Génico/genética , Células Germinativas/crecimiento & desarrollo , Filogenia , Autofecundación/genética , Conducta Sexual Animal/fisiología
7.
BMC Plant Biol ; 21(1): 266, 2021 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-34107871

RESUMEN

BACKGROUND: Hybridization and introgression are vital sources of novel genetic variation driving diversification during reticulated evolution. Quercus is an important model clade, having extraordinary diverse and abundant members in the Northern hemisphere, that are used to studying the introgression of species boundaries and adaptive processes. China is the second-largest distribution center of Quercus, but there are limited studies on introgressive hybridization. RESULTS: Here, we screened 17 co-dominant nuclear microsatellite markers to investigate the hybridization and introgression of four oaks (Quercus acutissima, Quercus variabilis, Quercus fabri, and Quercus serrata) in 10 populations. We identified 361 alleles in the four-oak species across 17 loci, and all loci were characterized by high genetic variability (HE = 0.844-0.944) and moderate differentiation (FST = 0.037-0.156) levels. A population differentiation analysis revealed the following: allopatric homologous (FST = 0.064) < sympatric heterogeneous (FST = 0.071) < allopatric heterogeneous (FST = 0.084). A Bayesian admixture analysis determined four types of hybrids (Q. acutissima × Q. variabilis, Q. fabri × Q. serrata, Q. acutissima × Q. fabri, and Q. acutissima × Q. variabilis × Q. fabri) and their asymmetric introgression. Our results revealed that interspecific hybridization is commonly observed within the section Quercus, with members having tendency to hybridize. CONCLUSIONS: Our study determined the basic hybridization and introgression states among the studied four oak species and extended our understanding of the evolutionary role of hybridization. The results provide useful theoretical data for formulating conservation strategies.


Asunto(s)
Evolución Molecular , Introgresión Genética , Especiación Genética , Hibridación Genética , Repeticiones de Microsatélite , Quercus/genética , Simpatría/genética , Teorema de Bayes , China , Flujo Génico , Variación Genética , Hibridación de Ácido Nucleico
8.
Genes (Basel) ; 12(1)2021 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-33467145

RESUMEN

Epigenetic components are hypothesized to be sensitive to the environment, which should permit species to adapt to environmental changes. In wild populations, epigenetic variation should therefore be mainly driven by environmental variation. Here, we tested whether epigenetic variation (DNA methylation) observed in wild populations is related to their genetic background, and/or to the local environment. Focusing on two sympatric freshwater fish species (Gobio occitaniae and Phoxinus phoxinus), we tested the relationships between epigenetic differentiation, genetic differentiation (using microsatellite and single nucleotide polymorphism (SNP) markers), and environmental distances between sites. We identify positive relationships between pairwise genetic and epigenetic distances in both species. Moreover, epigenetic marks better discriminated populations than genetic markers, especially in G. occitaniae. In G. occitaniae, both pairwise epigenetic and genetic distances were significantly associated to environmental distances between sites. Nonetheless, when controlling for genetic differentiation, the link between epigenetic differentiation and environmental distances was not significant anymore, indicating a noncausal relationship. Our results suggest that fish epigenetic variation is mainly genetically determined and that the environment weakly contributed to epigenetic variation. We advocate the need to control for the genetic background of populations when inferring causal links between epigenetic variation and environmental heterogeneity in wild populations.


Asunto(s)
Cipriniformes/genética , Metilación de ADN , Epigénesis Genética , Especiación Genética , Simpatría/genética , Animales , Epigenómica
9.
Sci Rep ; 10(1): 21506, 2020 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-33299075

RESUMEN

Trophic niche and diet comparisons among closely sympatric marine species are important to understand complex food webs, particularly in regions most affected by climate change. Using stable isotope analyses, all ontogenetic stages of three sympatric species of Arctic cephalopods (genus Rossia) were studied to assess inter- and intraspecific competition with niche and diet overlap and partitioning in West Greenland and the Barents Sea. Seven traits related to resource and habitat utilization were identified in Rossia: no trait was shared by all three species. High boreal R. megaptera and Arctic endemic R. moelleri shared three traits with each other, while both R. megaptera and R. moelleri shared only two unique traits each with widespread boreal-Arctic R. palpebrosa. Thus all traits formed fully uncrossing pattern with each species having unique strategy of resource and habitat utilization. Predicted climate changes in the Arctic would have an impact on competition among Rossia with one potential 'winner' (R. megaptera in the Barents Sea) but no potential 'losers'.


Asunto(s)
Decapodiformes/metabolismo , Animales , Regiones Árticas , Cefalópodos/metabolismo , Cambio Climático , Decapodiformes/genética , Dieta , Ecosistema , Cadena Alimentaria , Especiación Genética , Estado Nutricional , Simpatría/genética
10.
PLoS One ; 15(10): e0240625, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33119635

RESUMEN

Within the Anopheles gambiae complex, the sibling species An. coluzzii and An. gambiae are undergoing sympatric speciation. These species are characterized by rare hybrids in most of their geographical distribution. A strong assortative mating mediated by spatial swarm segregation has been shown whereas no intrinsic post-zygotic barriers have been found in laboratory conditions. To test the role of the hybridisation in reproductive isolation in natural populations transplant experiment are therefore needed to establish the significance of post-zygotic barriers. Previous studies indicated that predation is one of the major forces driving ecological divergence between An. gambiae and An. coluzzii. Here we extended these studies to their hybrids. Parental species and their F1 hybrids from reciprocal crosses were generated by the forced-mating technique as follows: female An. coluzzii × male An. coluzzii; female An. coluzzii × male An. gambiae; female An. gambiae × male An. coluzzii and female An. gambiae × Male An. gambiae. First instar larvae of each group from the crossing (here after An. coluzzii, Hybrid COL/GAM, Hybrid GAM/COL and An. gambiae, respectively) were transplanted in a field experiment with predation effect. Emergence success, development time of larvae and body size of the newly emerging adults were estimated as fitness components and then compared between parental species and F1 hybrids in absence and in presence of predators. Our findings confirm that An. coluzzii had higher fitness than An. gambiae in presence of predators versus in absence of predators. Moreover, the fitness of the F1 hybrid COL/GAM whose female parent was An. coluzzii matched that of An. coluzzii while that of the F1 reciprocal hybrid GAM/COL was similar to An. gambiae.


Asunto(s)
Anopheles/genética , Especiación Genética , Hibridación Genética/genética , Aislamiento Reproductivo , Animales , Femenino , Genotipo , Larva/genética , Larva/crecimiento & desarrollo , Masculino , Simpatría/genética
11.
Nature ; 588(7836): 106-111, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33116308

RESUMEN

The transition from 'well-marked varieties' of a single species into 'well-defined species'-especially in the absence of geographic barriers to gene flow (sympatric speciation)-has puzzled evolutionary biologists ever since Darwin1,2. Gene flow counteracts the buildup of genome-wide differentiation, which is a hallmark of speciation and increases the likelihood of the evolution of irreversible reproductive barriers (incompatibilities) that complete the speciation process3. Theory predicts that the genetic architecture of divergently selected traits can influence whether sympatric speciation occurs4, but empirical tests of this theory are scant because comprehensive data are difficult to collect and synthesize across species, owing to their unique biologies and evolutionary histories5. Here, within a young species complex of neotropical cichlid fishes (Amphilophus spp.), we analysed genomic divergence among populations and species. By generating a new genome assembly and re-sequencing 453 genomes, we uncovered the genetic architecture of traits that have been suggested to be important for divergence. Species that differ in monogenic or oligogenic traits that affect ecological performance and/or mate choice show remarkably localized genomic differentiation. By contrast, differentiation among species that have diverged in polygenic traits is genomically widespread and much higher overall, consistent with the evolution of effective and stable genome-wide barriers to gene flow. Thus, we conclude that simple trait architectures are not always as conducive to speciation with gene flow as previously suggested, whereas polygenic architectures can promote rapid and stable speciation in sympatry.


Asunto(s)
Cíclidos/clasificación , Cíclidos/genética , Especiación Genética , Genoma/genética , Genómica , Simpatría/genética , Animales , Cíclidos/anatomía & histología , Femenino , Flujo Génico , Flujo Genético , Masculino , Preferencia en el Apareamiento Animal , Herencia Multifactorial/genética , Filogenia , Pigmentación/genética , Polimorfismo Genético
12.
Life Sci Alliance ; 3(12)2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33082129

RESUMEN

Sympatric speciation (SS) has been contentious since the idea was suggested by Darwin. Here, we show in wild barley SS due to geologic and edaphic divergence in "Evolution Plateau," Upper Galilee, Israel. Our whole genome resequencing data showed SS separating between the progenitor old Senonian chalk and abutting derivative young Pleistocene basalt wild barley populations. The basalt wild barley species unfolds larger effective population size, lower recombination rates, and larger genetic diversity. Both species populations show similar descending trend ∼200,000 yr ago associated with the last glacial maximum. Coalescent demography analysis indicates that SS was local, primary, in situ, and not due to a secondary contact from ex situ allopatric population. Adaptive divergent putatively selected genes were identified in both populations. Remarkably, disease resistant genes were selected in the wet basalt population, and genes related to flowering time, leading to temporal reproductive isolation, were selected in the chalk population. The evidence substantiates adaptive ecological SS in wild barley, highlighting the genome landscape during SS with gene flow, due to geologic-edaphic divergence.


Asunto(s)
Hordeum/genética , Simpatría/genética , Ecosistema , Flujo Génico/genética , Especiación Genética , Variación Genética/genética , Genoma/genética , Israel , Selección Genética/genética , Suelo/química
13.
Philos Trans R Soc Lond B Biol Sci ; 375(1806): 20190533, 2020 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-32654642

RESUMEN

Intrinsic postzygotic barriers can play an important and multifaceted role in speciation, but their contribution is often thought to be reserved to the final stages of the speciation process. Here, we review how intrinsic postzygotic barriers can contribute to speciation, and how this role may change through time. We outline three major contributions of intrinsic postzygotic barriers to speciation. (i) reduction of gene flow: intrinsic postzygotic barriers can effectively reduce gene exchange between sympatric species pairs. We discuss the factors that influence how effective incompatibilities are in limiting gene flow. (ii) early onset of species boundaries via rapid evolution: intrinsic postzygotic barriers can evolve between recently diverged populations or incipient species, thereby influencing speciation relatively early in the process. We discuss why the early origination of incompatibilities is expected under some biological models, and detail how other (and often less obvious) incompatibilities may also serve as important barriers early on in speciation. (iii) reinforcement: intrinsic postzygotic barriers can promote the evolution of subsequent reproductive isolation through processes such as reinforcement, even between relatively recently diverged species pairs. We incorporate classic and recent empirical and theoretical work to explore these three facets of intrinsic postzygotic barriers, and provide our thoughts on recent challenges and areas in the field in which progress can be made. This article is part of the theme issue 'Towards the completion of speciation: the evolution of reproductive isolation beyond the first barriers'.


Asunto(s)
Flujo Génico , Especiación Genética , Aislamiento Reproductivo , Simpatría/genética , Modelos Genéticos
14.
Philos Trans R Soc Lond B Biol Sci ; 375(1806): 20190546, 2020 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-32654644

RESUMEN

Preference divergence is thought to contribute to reproductive isolation. Ecology can alter the way selection acts on female preferences, making them most likely to diverge when ecological conditions vary among populations. We present a novel mechanism for ecologically dependent sexual selection, termed 'the ecological stage' to highlight its ecological dependence. Our hypothesized mechanism emphasizes that males and females interact over mating in a specific ecological context, and different ecological conditions change the costs and benefits of mating interactions, selecting for different preferences in distinct environments and different male traits, especially when traits are condition dependent. We test key predictions of this mechanism in a sympatric three-spine stickleback species pair. We used a maternal half-sib split-clutch design for both species, mating females to attractive and unattractive males and raising progeny on alternate diets that mimic the specialized diets of the species in nature. We estimated the benefits of mate choice for an indicator trait (male nuptial colour) by measuring many fitness components across the lifetimes of both sons and daughters from these crosses. We analysed fitness data using a combination of aster and mixed models. We found that many benefits of mating with high-colour males depended on both species and diet. These results support the ecological stage hypothesis for sticklebacks. Finally, we discuss the potential role of this mechanism for other taxa and highlight its ability to enhance reproductive isolation as speciation proceeds, thus facilitating the evolution of strong reproductive isolation. This article is part of the theme issue 'Towards the completion of speciation: the evolution of reproductive isolation beyond the first barriers'.


Asunto(s)
Especiación Genética , Preferencia en el Apareamiento Animal , Aislamiento Reproductivo , Smegmamorpha/genética , Simpatría/genética , Animales , Femenino , Masculino
15.
BMC Evol Biol ; 20(1): 49, 2020 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-32349663

RESUMEN

BACKGROUND: Sympatric sister species provide an opportunity to investigate the genetic mechanisms and evolutionary forces that maintain species boundaries. The persistence of morphologically and genetically distinct populations in sympatry can only occur if some degree of reproductive isolation exists. A pair of sympatric sister species of Primulina (P. depressa and P. danxiaensis) was used to explore the genetic architecture of hybrid male sterility. RESULTS: We mapped one major- and seven minor-effect quantitative trait loci (QTLs) that underlie pollen fertility rate (PFR). These loci jointly explained 55.4% of the phenotypic variation in the F2 population. A Bateson-Dobzhansky-Muller (BDM) model involving three loci was observed in this system. We found genotypic correlations between hybrid male sterility and flower morphology, consistent with the weak but significant phenotypic correlations between PFR and floral traits. CONCLUSIONS: Hybrid male sterility in Primulina is controlled by a polygenic genetic basis with a complex pattern. The genetic incompatibility involves a three-locus BDM model. Hybrid male sterility is genetically correlated with floral morphology and divergence hitchhiking may occur between them.


Asunto(s)
Hibridación Genética , Lamiales/genética , Infertilidad Vegetal/genética , Simpatría/genética , Análisis de Varianza , Epistasis Genética , Flores/anatomía & histología , Flores/genética , Genética de Población , Genoma de Planta , Genotipo , Vigor Híbrido/genética , Fenotipo , Polen/genética , Análisis de Componente Principal , Sitios de Carácter Cuantitativo/genética
16.
Proc Natl Acad Sci U S A ; 117(11): 5955-5963, 2020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-32123089

RESUMEN

In plants, the mechanism for ecological sympatric speciation (SS) is little known. Here, after ruling out the possibility of secondary contact, we show that wild emmer wheat, at the microclimatically divergent microsite of "Evolution Canyon" (EC), Mt. Carmel, Israel, underwent triple SS. Initially, it split following a bottleneck of an ancestral population, and further diversified to three isolated populations driven by disruptive ecological selection. Remarkably, two postzygotically isolated populations (SFS1 and SFS2) sympatrically branched within an area less than 30 m at the tropical hot and dry savannoid south-facing slope (SFS). A series of homozygous chromosomal rearrangements in the SFS1 population caused hybrid sterility with the SFS2 population. We demonstrate that these two populations developed divergent adaptive mechanisms against severe abiotic stresses on the tropical SFS. The SFS2 population evolved very early flowering, while the SFS1 population alternatively evolved a direct tolerance to irradiance by improved ROS scavenging activity that potentially accounts for its evolutionary fate with unstable chromosome status. Moreover, a third prezygotically isolated sympatric population adapted on the abutting temperate, humid, cool, and forested north-facing slope (NFS), separated by 250 m from the SFS wild emmer wheat populations. The NFS population evolved multiple resistant loci to fungal diseases, including powdery mildew and stripe rust. Our study illustrates how plants sympatrically adapt and speciate under disruptive ecological selection of abiotic and biotic stresses.


Asunto(s)
Resistencia a la Enfermedad/genética , Simpatría/genética , Triticum/genética , Ascomicetos , Basidiomycota , Cromosomas de las Plantas , Flujo Génico , Genes de Plantas/genética , Homocigoto , Israel , Cariotipificación , Enfermedades de las Plantas/microbiología , Estrés Fisiológico
17.
Med Vet Entomol ; 34(3): 364-368, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32160338

RESUMEN

Four species of the Anopheles maculipennis complex have previously been recorded in Sweden. A recent addition to the complex is Anopheles daciae, which is considered to be closely related to, but distinct from Anopheles messeae. The original designation of An. daciae was based on five genetic differences (161, 165, 167, 362 and 382) in the second internal transcribed spacer (ITS) 2 of the ribosomal RNA. Further studies have shown that only two nucleotide differences (362 and 382) robustly separate the species. Thirty-three An. maculipennis complex mosquitoes were collected in the province of Uppland, Sweden. All were An. daciae but showed double peaks for three variable positions (161, 165 and 167). When cloned, the intra-individual nucleotide variation was almost exclusively fixed with either TTC or AAT, originally diagnostic for An. messae and An. daciae, respectively. To further investigate the intra-individual variation, nine An. daciae and 11 An. messeae were collected in southern Sweden and their ITS2 fragments were amplified and sequenced using Illumina MiSeq sequencing (Illumina, Inc., San Diego, CA, USA). For the diagnostic nucleotide 382 no intra-individual variation could be detected. However, although each An. daciae specimen carried several ITS2 sequence variants for the four other nucleotides, there was no intra-individual variation in the An. messeae specimens.


Asunto(s)
Anopheles/genética , ADN Espaciador Ribosómico/genética , Mosquitos Vectores/genética , Polimorfismo de Nucleótido Simple , Animales , Femenino , Malaria/transmisión , Especificidad de la Especie , Suecia , Simpatría/genética
18.
PLoS Genet ; 16(2): e1008632, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32084126

RESUMEN

Transposable elements constitute a large fraction of most eukaryotic genomes. Insertion of mobile DNA sequences typically has deleterious effects on host fitness, and thus diverse mechanisms have evolved to control mobile element proliferation. Mobility of the Ty1 retrotransposon in Saccharomyces yeasts is regulated by copy number control (CNC) mediated by a self-encoded restriction factor derived from the Ty1 gag capsid gene that inhibits virus-like particle function. Here, we survey a panel of wild and human-associated strains of S. cerevisiae and S. paradoxus to investigate how genomic Ty1 content influences variation in Ty1 mobility. We observe high levels of mobility for a tester element with a gag sequence from the canonical Ty1 subfamily in permissive strains that either lack full-length Ty1 elements or only contain full-length copies of the Ty1' subfamily that have a divergent gag sequence. In contrast, low levels of canonical Ty1 mobility are observed in restrictive strains carrying full-length Ty1 elements containing a canonical gag sequence. Phylogenomic analysis of full-length Ty1 elements revealed that Ty1' is the ancestral subfamily present in wild strains of S. cerevisiae, and that canonical Ty1 in S. cerevisiae is a derived subfamily that acquired gag from S. paradoxus by horizontal transfer and recombination. Our results provide evidence that variation in the ability of S. cerevisiae and S. paradoxus strains to repress canonical Ty1 transposition via CNC is regulated by the genomic content of different Ty1 subfamilies, and that self-encoded forms of transposon control can spread across species boundaries by horizontal transfer.


Asunto(s)
Variaciones en el Número de Copia de ADN , Transferencia de Gen Horizontal , Genoma Fúngico/genética , Retroelementos/genética , Saccharomyces cerevisiae/genética , ADN de Hongos/genética , Evolución Molecular , Simpatría/genética
19.
Genes (Basel) ; 11(2)2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-32024145

RESUMEN

Antimicrobial peptides (AMPs) are evolutionarily ancient molecules that play an essential role in innate immunity across taxa from invertebrates to vertebrates. The evolution system of AMP system has not been well explained in the literature. In this study, we cloned and sequenced AMP transcriptomes of three frog species, namely Rana dybowskii, Rana amurensis, and Pelophylax nigromaculatus, which are partially sympatric in northeast Asia, but show different habitat preferences. We found that each species contained 7 to 14 families of AMPs and the diversity was higher in species with a large geographic range and greater habitat variation. All AMPs are phylogenetically related but not associated with the speciation process. Most AMP genes were under negative selection. We propose that the diversification and addition of novel functions and improvement of antimicrobial efficiency are facilitated by the expansion of family members and numbers. We also documented significant negative correlation of net charges and numbers of amino acid residues between the propiece and mature peptide segments. This supports the Net Charge Balance Hypothesis. We propose the Cut Point Sliding Hypothesis as a novel diversification mechanism to explain the correlation in lengths of the two segments.


Asunto(s)
Antiinfecciosos/clasificación , Péptidos Catiónicos Antimicrobianos/clasificación , Péptidos Catiónicos Antimicrobianos/genética , Anuros/clasificación , Evolución Molecular , Mutación , Secuencia de Aminoácidos , Animales , Antiinfecciosos/química , Antiinfecciosos/metabolismo , Péptidos Catiónicos Antimicrobianos/química , Anuros/genética , Asia , Filogenia , Homología de Secuencia , Simpatría/genética , Transcriptoma
20.
J Hered ; 111(1): 57-69, 2020 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-31899502

RESUMEN

Studying how isolation can impact population divergence and adaptation in co-distributed species can bring us closer to understanding how landscapes affect biodiversity. The Sargo, Anisotremus davidsonii (Haemulidae), and the Longjaw mudsucker, Gillichthys mirabilis (Gobiidae), offer a notable framework to study such mechanisms as their Pacific populations cross phylogeographic breaks at Point Conception, California, United States, and Punta Eugenia, Mexico, and are separated to those in the Sea of Cortez by the Baja California peninsula. Here, thousands of loci are genotyped from 48 Sargos and 73 mudsuckers using RADseq to characterize overall genomic divergence, and search for common patterns of putatively neutral and non-neutral structure based on outlier loci among populations with hypothesized different levels of isolation. We further search for parallels between population divergence and the total proportion of outliers, outlier FST distribution, and the proportion of outliers matching coding regions in GenBank. Statistically significant differentiation is seen across Point Conception in mudsucker (FST = 0.15), Punta Eugenia in Sargo (FST = 0.02), and on either side of the Baja California peninsula in both species (FST = 0.11 and 0.23, in Sargo and mudsucker, respectively). Each species shows structure using neutral and non-neutral loci. Finally, higher population divergence yields a more even distribution of outliers along their differentiation range but does not always translate into higher outlier proportions or higher rates in which outliers are matched to coding regions. If repeated in similar systems, observed genomic patterns might reveal speciation signatures in diverse networks of population isolation.


Asunto(s)
Peces/genética , Especiación Genética , Selección Genética , Simpatría/genética , Animales , California , México , Océano Pacífico , Filogeografía , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...